Low-Temperature Synthesis of Bismuth Chalcohalides: Candidate Photovoltaic Materials with Easily, Continuously Controllable Band gap

نویسندگان

  • Hironobu Kunioku
  • Masanobu Higashi
  • Ryu Abe
چکیده

Although bismuth chalcohalides, such as BiSI and BiSeI, have been recently attracting considerable attention as photovoltaic materials, the methods available to synthesize them are quite limited thus far. In this study, a novel, facile method to synthesize these chalcohalides, including BiSBr1-xIx solid solutions, at low temperatures was developed via the substitution of anions from O(2-) to S(2-) (or Se(2-)) using bismuth oxyhalide precursors. Complete phase transition was readily observed upon treatment of BiOI particles with H2S or H2Se at surprisingly low temperatures of less than 150 °C and short reaction times of less than 1 h, producing BiSI and BiSeI particles, respectively. This method was also applied for synthesizing BiSBr1-xIx, where continuous changes in their band gaps were observed depending on the ratio between iodine and bromine. The composition of all elements (except oxygen) in the chalcohalides thus produced was almost identical to that of the oxyhalide precursors, attributed to the suppressed volatilization of halogens at such low temperatures. All chalcohalides loaded on FTO clearly exhibited an anodic photocurrent in an acetonitrile solution containing I(-), attributed to their n-type nature, e.g., the BiSI electrode exhibited high IPCE (64% at 700 nm, +0.2 V vs. Ag/AgCl).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

Synthesis of the bismuth oxyhalide solid solutions with tunable band gap and photocatalytic activities.

Three series of BiOM(x)R(1-x) (M, R = Cl, Br, I) solid solutions were systematically synthesized through a low-temperature precipitation. These solid solutions were characterized by XRD, FESEM, TEM, EDS, UV-vis spectra, nitrogen sorption/desorption, and PL. The tunable band gaps of the as-prepared solid solutions were realized via only changing the molar ratio of two halide ions. Meanwhile, the...

متن کامل

Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: A case study in sulfur-hyperdoped silicon

We present a methodology for estimating the efficiency potential for candidate impurity-band photovoltaic materials from empirical measurements. This methodology employs both Fourier transform infrared spectroscopy and low-temperature photoconductivity to calculate a " performance figure of merit " and to determine both the position and bandwidth of the impurity band. We evaluate a candidate im...

متن کامل

Low temperature hydrothermal synthesis, evaluation of band gap energies and catalytic performance for Biginelli reactions of Sr2-xAxNb2O7+δ (A=Eu3+ and Nd3+) (x = 0.01 and 0.05) nanomaterials

Nano powders Eu3+ and Nd3+ - doped Sr2Nb2O7 were prepared by a low temperature hydrothermalmethod at 120 ºC for 48 h followed by annealing at 400 ᵒC for 3 h among Sr(NO3)2and Nb2O5, Eu2O3 and Nd2O3 raw materials at stoichiometric 1:1 Sr:Nb molar ratio. Characterizationof the synthesized materials was performed by X-ray powder diffraction (XRPD)technique. FullProf program employing profile match...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016